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Summary 

There are two key findings. First, complexity and congestion have a strong 

positive correlation. Second, for non-complex networks, the choice of a clustering 

algorithm is irrelevant. Each of the five metrics showed little or no congestion with 

low values. The clustering algorithm selected can minimize congestion given the 

level of a complexity metric. 

Much time and effort was spent to develop the network simulation software. 

 It is a versatile tool that can be utilized for other purposes. It was coded in a manner 

that makes it scalable for other network analyses. Additional network metrics and 

clustering methods can be integrated with little modification to the existing code 

But for analysis of networks larger than 150 nodes, the code must be optimized for 

more efficient run times. In its current state, analyzing networks exceeding 150 

nodes is not feasible. 

The network simulator is a console application that provides the means for 

user input and simulation status while results are exported for analysis. This 

method works well as long as the user is relatively “computer literate”. However, it  

can cause confusion for large-scale projects. As a fix, a graphical user interface could 

provide a clean interface. Visualization could then be incorporated into the 

software to graphically show node movement, congestion levels, and more.   
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1 Introduction and Research Objectives 

1.1 Introduction  

Traditionally, networks have operated in an infrastructure mode where designated 

hardware (routers, hubs, switches, etc.) is responsible for forwarding and 

maintaining the flow of data. With the advent of advanced warfare requirements, 

traditional networking methods were not adequate as they do not allow for the 

rapid deployment of resources (land vehicles, air vehicles, etc). This requirement 

led to the development of wireless ad-hoc networks. 

A wireless ad-hoc network does not rely on fixed infrastructure or predetermined 

connectivity. It is a self organizing multi-hop wireless network in which all of the 

nodes can be mobile. Data is exchanged between nodes via wireless 

communication. Aside from the ability to be rapidly deployed, wireless ad-hoc 

networks have the ability to exist in highly volatile environments. Unlike 

traditional networks, if one node is destroyed it will not impact the data exchange 

between the remaining nodes within the network. 
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Given the dynamic characteristics of a wireless ad-hoc network, the way in which 

data is exchanged must be efficient to avoid congestion. This is necessary to 

ensure data transfers are quick and reliable. The primary factors affecting 

communication between nodes is the network topology and the routing method. 

Network topology and its impact on congestion is the focus of this work and an 

overview is provided in the literature review. 

1.2 Research Objectives 

There are two main objectives of this work. Primarily, the following network 

metrics will be analyzed to determine how they impact congestion in wireless ad-

hoc networks: 

• Average Path Length 

• Average Degree 

• Network Diameter 

• Clustering Coefficient 

• Offdiagonal Complexity 

The values of these metrics will be studied for various random networks in an 

effort to link the metric levels to congestion levels. Furthermore, the secondary 

objective is to select the best clustering algorithm that will minimize congestion 
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given a particular metric level. For example, if we know the average path length is 

high, a clustering technique that minimizes congestion when the average path 

length is high should be selected. Our list of candidate clustering techniques is as 

follows: 

• Lowest ID Clustering 

• Highest Degree Clustering 

• MOBIC 

In order to complete these objectives, a network simulator was developed using 

Microsoft Visual C++ 2005. The network simulator has the ability to generate 

networks of various types and size, compute the five metrics as previously 

discussed, apply each of the clustering techniques, and evaluate congestion. 

Betweenness was selected to measure congestion. This, along with the network 

metrics and clustering techniques will be discussed in Chapter 2 and Chapter 3. 

1.3 Outline of the Thesis 

The rest of this work is outlined as follows. Chapter 2 provides a literature review 

of network topologies, clustering algorithms, and complexity metrics used in this 

work. Chapter 3 defines our technical approach and includes a detailed overview 

of the network simulation software. This leads into Chapter 4 which lays out the 



5 
 

experimental design and provides an analysis of the results obtained from 

simulation. Finally, Chapter 5 offers conclusions on these results and provides 

insight into future work.        
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2 Literature Review 

2.1 Network Topology  

The network simulation software developed in this work begins with a flat 

network and uses clustering techniques to convert the network into hierarchical 

form where congestion is evaluated. The decision to evaluate congestion in 

hierarchical networks was made as they are used in the vast majority of real world 

applications (i.e. environmental sensors, intelligence, etc.) Despite their increased 

overhead costs and vulnerability, exceptional communication efficiency makes 

hierarchical networks a more desirable choice. Both hierarchical and flat 

topologies will be discussed in detail. 

 

2.1.1 Hierarchical Topology 

The selection of the correct network topology given the network characteristics is 

extremely important to ensure reliable and efficient communication between nodes. 

The topology of a network can be either hierarchical or flat. 
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In a hierarchical topology nodes are divided into clusters. Within each cluster, a 

cluster head is selected via a mathematical formulation or heuristic method. 

Cluster heads are responsible for keeping track of which nodes are maintained in 

their respective cluster. Furthermore, they are responsible for transmitting data 

between clusters. The figure above is an example of a hierarchical topology. Each 

of the five ovals represents a cluster, and the black circles within each cluster 

represent the cluster heads. The white dots are regular nodes. 

Each of the cluster heads maintains a continuously updated routing table. This 

table contains specific information detailing which cluster each node belongs to. If 

a node desires to transfer information to another node, the information is sent to 

the sending node’s cluster head. This cluster head scans its routing table to 

determine which cluster the recipient is in. If the recipient is in the same cluster, 

Figure 2.1: Example of a hierarchical topology 
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the data is immediately forwarded to the receiving node. If not, the cluster head 

scans its routing table to determine which cluster the recipient is in and forwards 

the data to the appropriate cluster head where it is again forwarded to the recipient.  

2.1.2 Flat Topology 

 

 

Unlike hierarchical networks, flat networks do not contain cluster heads. All nodes 

are equal in terms of communication capabilities and each maintains its own 

routing information. The direct one-hop connections between nodes are generally 

based on proximity. Nodes communicate with each other via an infinitely variable 

number of hops between other nodes in the network. Haas and Tabrizi [5] favor a 

flat topology over a hierarchical topology for several reasons: 

In hierarchical networks there is often times a single path between a pair of nodes. 

In a high threat environment, the elimination of a single node in that path would 

cause a communication failure between the nodes. This is avoided in flat networks as 

there are often a number of paths between a pair of nodes. 

Figure 2.2: Example of a flat topology 
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Nodes in a flat environment operate using much less power than nodes in a 

hierarchical environment. The additional power consumed in a hierarchical 

topology is due the constant change of clusters and cluster heads. When cluster 

heads change, the routing information among all cluster heads must update. This 

process requires a significant amount of energy. Lower power consumption will 

allow nodes with constrained energy resources to exist longer in the network. 

More importantly, lower energy use will give nodes a lower probability of being 

detected. Thus, the overall threat of attack to a network will be reduced. 

In summary, hierarchical networks are advantageous to implement as they allow 

for more efficient communication among nodes. However, these networks have 

greater overhead costs and are more susceptible to attacks. 

2.2 Clustering Algorithms 

As stated in Section 2.1.1, clusterheads are a requirement of hierarchical networks. 

They are the channel of communication among all nodes in the network, making 

their selection key to successful data transfer throughout the entire network. The 

clustering algorithms selected for this work are highest degree, lowest id, and 

MOBIC. Each of these will be discussed in detail. 
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Typically, the degree of a node is defined as the number of direct one-hop 

connections it has with other nodes. For this heuristic, the degree of a node is 

defined as the number of nodes within its transmission range. The highest degree 

clustering method assigns clusterheads using the following procedure [7]: 

1. All of the nodes in the network are scanned and the node with the highest 

degree is selected as a cluster head. 

2. All of the nodes in the transmission range of the selected cluster head are 

assigned to a cluster. 

3. The remaining nodes that are not in a cluster are once again scanned and 

the process repeats until all nodes are assigned to a cluster. 

This heuristic provides excellent stability within the clusters but lacks proper load 

balancing.   

2.2.2 Lowest ID Clustering  

The lowest ID clustering method [4, 6] is similar to the highest degree heuristic, 

but the selection method is based on a ID assigned to each node. The network is 

scanned and the node with the lowest ID is selected. As with the highest degree 

method, all nodes within the transmission range of the selected node form a cluster 

head. The process is repeated with the remaining nodes until all nodes are assigned 

to a cluster head.  

2.2.1 Highest Degree Clustering 
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2.2.3 MOBIC 

Basu et al. [1] proposed this clustering algorithm which elects clusterheads based 

on relative mobility. This algorithm assumes that the position and speed of each 

node is unknown and uses transmission and signal strength to determine relative 

mobility. For the work, the exact position and speed of all nodes in the network is 

known at all times. Thus, slight modifications to the clusterhead election procedure 

were made. The procedure is as follows: 

1. Calculate the pair wise relative mobility of each node:                           

  

2. Calculate aggregate relative mobility of each node:  

3. Select node with lowest aggregate relative mobility among its 

neighbors as a cluster head 

At this point, the clusterhead and all of the nodes connected to the clusterhead are 

considered to be covered. The steps of selecting a clusterhead repeat but only 

consider uncovered nodes. The algorithm is completed when all nodes are covered. 
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The two example networks below will be referred to during the discussion of the 

complexity metrics. 

 

 

 

 

 

2.3.1 Average Path Length 

The path length between two nodes can be defined as the smallest number of edges 

connecting them. This assumes that all of the edges have an equal length. The path 

B A 

C 

B 

A 

Figure 2.3: Depiction of example network 1 

Figure 2.4: Depiction of example network 2 

2.3 Complexity Metrics



13 
 

length between nodes A and B in the Example Network is 2. This can be formally 

written as follows: 

l(A,B) = min l(A,B) 

The average path length of a network is simply the average of all the path lengths 

between nodes. This is formally defined as: 

!">==<
BA

BAlNNBAlL
,

),()1(/2),(
 

2.3.2 Network Diameter 

The network diameter is defined as the maximum path length between any pair of 

nodes in the network. This is formally written as: 

),(max BAlD =  

For Example Network 2, the diameter of the network is 4. This is the maximum 

distance between any two pairs of nodes in the network. 

2.3.3 Average Degree 

The degree of a node (k) is the sum of the edges it shares with other nodes. The 

degree of Node A in Example Network 1 has a degree of 5. The average degree of 

a network is simply the sum of the degrees of each node divided by the total 

number of nodes. This is formally written as: 

!>=<
A AkNk /1
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2.3.4 Network Clustering Coefficient 

The clustering coefficient [8] can be explained through an example. Consider the 

network below: 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the clustering coefficient of a node is the actual one hop connections 

between the neighbors of the node divided by all possible connections between 

neighbors of a node. The clustering coefficient of the entire network is simply the 

average of the clustering coefficients of all the nodes. 

Detail of Node 

6 

Complete Network 

Clustering Coefficient for Node 6 = A / B 

C = Number of One Hop Connections 

B = Number of Potential Connections Between Pairs of Connected 

Nodes 

B = C (C-1) / 2 = 3 (3 – 1) / 2 = 3 

A = Actual Connections Between These Pairs of Nodes = 2 

Clustering Coefficient for Node 6 = 2 / 3 

 

 

 

 

 

 

 

Figure 2.5: Method for determining the network clustering coefficient metric 
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The offdiagonal complexity [2] is computed by first calculating the node-node link 

correlation matrix. The matrix appears as follows: 

 

Figure 2.6: Layout of the node-node link correlation matrix 

Each box in the square matrix above represents the number of connections 

between pairs of nodes with degrees corresponding to those indicated on the left 

and upper portions of the chart. The notation kmax simply represents the maximum 

degree of any node in the network. After this matrix is determined, the following 

formula is used to determine an: 

 

After all an values are computed, the offdiagonal complexity is calculated as follows: 

2.3.5 Offdiagonal Complexity 
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The example in Figure 2.7 helps clarify this computational procedure.  

 

 

Node-Node Link Correlation 

Matrix 

1 

2 

3 

4 

5 

6 

8 

7 

1 2 3 5 

1 

2 

3 

5 

1 1 3 

1 1 1 

1 

1 

1 

3 

1 

0 

0 

 (1) + 

(1) 
8 

 (1) + (1) + (1) 

a1 = 3/8 

3/8 

a1 

= 8 

a2 = 2/8 

3/8 

a2 

= 

      (3) 

8 

a3 = 3/8 

3/8 

a3 

= 

OdC = .46999  

0 1 

0 

Figure 2.7: A numerical example for computing offdiagonal  complexity
complexity 
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3 Technical Approach 

The first step in analyzing the metrics and clustering techniques was to obtain data 

via simulation output. Since the data required for this work is relatively unique, 

existing software capable of outputting the needed information was not 

commercially available. Thus, a customized network simulator specifically 

tailored to the objectives of this work was developed.   

The simulation environment was designed in Microsoft Visual C++ 2005. The 

simulator is capable of generating a network based on several user defined 

characteristics, calculating five metrics to characterize the network, and cluster the 

network using three different techniques. The figure below represents an overview 

of the simulator. Each component of the figure will be discussed in detail. 
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Figure 3.1: An overview of the simulation environment 

3.1 User Definitions 

The program begins with a user defining several network parameters. These 

parameters include the number of nodes in the network, the area of the field, the 

number of mobile iterations, the communication range for each node, the speed of 

each node, the number of replications, and the time interval for each instance of 

the network. The number of nodes is input at compile time. Thus, to enter the 

number of nodes the user must modify the header file named NetGenDefs.h and 

recompile the program. Clearly, this is not efficient programming and is something 

that could be worked out in a future build. After the user modifies the header file 

to include the desired number of nodes, the program is compiled and executed. 
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The user will be prompted to enter the square length of the field and press the enter 

key. Given that a user enters an integer P, this would indicate that the simulation 

area would have an area of P
2 

meters. Next, the user is prompted to enter the 

maximum distance for communication and press enter. This value tells the 

program the farthest distance apart (in meters) two nodes may be to have 

communication with each other. Following this definition, the user must define the 

velocity of nodes (this is constant for all nodes in the network) and the time 

interval by which simulation calculations are made. Also, the user is prompted to 

specify the number of mobile iterations, or time steps, to include in the simulation 

run. To illustrate, assume the user enters 100, 20, and 10 for velocity, time 

interval, and iterations, respectively. This would indicate that all nodes are moving 

at 100 m/s, the time between each iteration is 20 seconds, and a total of 10 

iterations will be considered. Finally, the user must define the number of 

replications. Each replication will begin with the same set of user defined 

parameters (i.e. number of nodes, field area, etc.) but the random number seed will 

be different (thus changing the random placement of nodes in the field). It should 

be noted that the program also allows these values to be “streamed in” instead of 

requiring a user to sit down and manually enter values for each simulation trial. 

This saves a substantial amount of time when running the simulation for multiple 

combinations of the parameters. 
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3.2 Software Calculations 

Following the user definitions of network parameters, numerous software 

calculations are performed. First, the distance between each node in the matrix is 

calculated and stored in a square matrix called distancematrix. The elementary 

equation to determine the distance between two points is used and its 

implementation in C++ is shown below. 

 

 

Each value in distancematrix is compared with the maximum distance allowed for 

communication as previously discussed. If the distancematrix value is less than the 

maximum communication distance clearly there is a link between the 

corresponding nodes and thus an edge is created in the network. The square matrix 

//Calculate distance between all nodes and store values in distancematrix 

for ( int counter1 = 0; counter1 < NUMBER_OF_NODES; counter1++ ) 

{ 

for ( int counter2 = 0; counter2 < NUMBER_OF_NODES; counter2++ ) 

{ 

distancematrix[counter1][counter2] = sqrt((pow(nodexCurrent[counter1]-

nodexCurrent[counter2],2)) + (pow(nodeyCurrent[counter1]-

nodeyCurrent[counter2],2))); 

}  

} 

Figure 3.2: C++ code for determining the distance between two nodes 
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named edgematrix preserves all of these edges. A value of 1 in the edge matrix 

indicates that a connection exists, while a value of 0 indicates no connection. For 

clarification, consider the distancematrix and edgematrix below. Assume that the 

user defined the maximum distance for communication to be 40. 

Distance Matrix 

 Node 1 Node 2 Node 3 

Node 1 - 35 67 

Node 2 35 - 50 

Node 3 67 50 - 
                                       

        Table 3.1: Sample distance matrix 

 

Edge Matrix 

 Node 1 Node 2 Node 3 

Node 1 - 1 0 

Node 2 1 - 0 

Node 3 0 0 - 
                                       

        Table 3.2: Sample edge matrix 

Since the distance between Node 1 and Node 2 is less than 40, a 1 has been placed 

in edgematrix to indicate that a connection (or edge) between these two nodes 

exists. At this stage, all of the preliminary definitions and calculations have been 

performed enabling the calculation of network metrics to begin.  

The five network metrics are recomputed at each mobile instance of the simulation 

run. At the end of the simulation, the average of each metric is computed and 

outputted to a text file. The implementation of each metric is briefly discussed 

below. 
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3.2.1 Average Path Length 

The calculation of this metric begins by determining the shortest path between 

each pair of nodes in the network. To do this, the Floyd-Warshall Algorithm [3] 

was implemented. The shortest paths are stored in a matrix named shortestpath. 

Below is the implementation of the Floyd-Warshall shortest path algorithm in 

C++. 

 

3 

It should be noted that zero values (indicating a lack of connection between nodes) 

in the edgematrix are temporarily converted to a large integer value (999). 

Otherwise, the algorithm would not work as zero would incorrectly be assigned as 

for (int k = 0; k < NUMBER_OF_NODES; k++) 

{  

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

for (int j = 0; j < NUMBER_OF_NODES; j++) 

{ 

shortestpath[i][j] = min(shortestpath[i][j], shortestpath[i][k] + shortestpath[k][j]) ; 

} 

} 

} 

 

Figure 3.3: C++ code for the Floyd-Warshall shortest path algorithm 
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the shortest path between many pairs of nodes in the network. After the shortest 

paths are calculated and stored for every pair of nodes in the network, the average 

value of the numbers in the matrix is calculated. The result of this calculation is 

the average path length. This algorithm is computed in AvgPathLength.cpp. 

3.2.2 Network Diameter 

The network diameter is defined as the longest shortest path. Thus, the Floyd-

Warshall algorithm is again used to determine the shortest path between each pair 

of nodes in the network and a simple algorithm is used to determine maximum 

value in the shortestpath matrix. This value is returned as maxpath and is 

computed in NetworkDiameter.cpp. 

3.2.3 Average Degree 

The degree of a node is sum of edges connecting it to other nodes. Thus, the 

maximum possible degree of any node in the network is equal to the total number 

of nodes minus one. Furthermore, the degree of any node in a network is simply 

the sum of its corresponding row in edgematrix. Thus, summing all of the values 

in edgematrix and dividing by the total number of nodes gives us the average 

degree. This metric is computed in AvgDegree.cpp. 
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3.2.4 Clustering Coefficient 

As discussed earlier, the clustering coefficient of a node is the number of actual 

connections between the neighbors of a node divided by the potential connections 

between the neighbors of a node. 

Clustering Coefficient of a Node = A / B 

A = Actual Connections Between Neighbors of a Node 

B = Potential Connections Between Neighbors of a Node 

The number of potential connections for each node (the denominator) is relatively 

simple to calculate. We mentioned earlier that the degree of a node could be 

computed by taking the sum of the corresponding row in edgematrix. The sum of 

each row (degree of each node) can then be stored in an array named degreearray.  

Thus, the denominator, B, can be computed as: 

coeffdenom[i] = (degreearray[i] * (degreearray[i] - 1)) / 2 

The numerator is a bit more challenging to compute. The details of the code used 

to compute the numerator can be found in the appendix. After the numerator is 

computed for each node it is stored in array named coeffnum. Coeffnum is then 

divided by coeffdenom and the result is stored in an array named clusteringcoeff. 

This array represents the clustering coefficient of each node in the network. The 
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average of all the values of this array is the network clustering coefficient. This 

metric is computed in ClusteringCoeff.cpp. 

3.2.5 Offdiagonal Complexity 

The offdiagonal complexity is the most difficult and demanding metric in the 

network simulation. Due to the complexity of this metric, the C++ implemenation 

will not be discussed in detail. The implementation follows the calculation steps as 

detailed earlier: 

1. Develop Node-Node Link Correlation Matrix 

2. Determine an values using appropriate formula 

3. Determine offdiagonal complexity using appropriate formula 

If interested in the detailed C++ implementation of offdiagonal complexity, the 

reader may compare the above steps with the code in the appendix. This metric is 

computed in ODComplexity.cpp. 

The preceding metrics are computed for every time step of the network. Thus, if 

there are ten time steps, each of the metrics will be computed 10 times and only 

the average of these will be output to the user. After all of the network metrics are 

calculated at each time step, the network is clustered using three techniques. 
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3.2.6 Clustering Algorithms 

The simulator utilizes the Lowest ID, Highest Degree, and MOBIC clustering 

algorithms at each time step in the simulation. These are discussed in detail in an 

earlier section. Similar to offdiagonal complexity, their C++ implementation is 

relatively complex for discussion. Once again, a reader interested in the detailed 

implementation is asked to compare the steps outlined in the prior section and 

compare them with the C++ code attached in the appendix. Lowest ID, Highest 

Degree, and MOBIC are computed in LowestIDClustering.cpp, 

HighestDegreeClustering.cpp, and MOBICClustering.cpp, respectively. 

3.2.7 Betweenness 

Following the clustering of the network using the aforementioned algorithms, the 

betweenness measure is calculated for all three cases.  The betweenness of a node 

is the number of shortest paths passing through it. It is computed using a modified 

version of the Floyd-Warshall algorithm. This code is included in the appendix. 

The betweenness of each node is stored in an array named betweenness. Each 

value of the betweenness array is then compared with the user defined node 

capacity. Finally, the percentage of nodes in the betweenness array that exceed the 
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node capacity is calculated. This is our output measure. It is stored as a variable 

named percentExceedingCapacity. The betweenness measure is computed in 

betweenness.cpp. 

3.2.8 Node Movement 

Once the metrics have been calculated, clustering has been performed, and the 

betweenness is determined, we have successfully performed all of the 

requirements for a single time step in the network. The next task is to move the 

nodes based on the user defined velocity and time interval and prepare the next 

iteration of the network. The nodes move according to the following code. 

 

The array nodexPrevious and nodeyPrevious store the x-coordinates for every 

node in network before any movement takes place. The sincosvalueforiteration 

for ( i = 0; i < NUMBER_OF_NODES; i++ ) 

{ 

 sincosvalueforiterations = (-15 + rand() % 15); 

nodexCurrent[i] = nodexPrevious[i] + (cos(sincosvalueforiterations) * (nodespeed * 

60)) ; 

if (sincosvalueforiterations > 0) 

nodeyCurrent[i] = nodeyPrevious[i] + (sin(sincosvalueforiterations) * (nodespeed * 

60)) ; 

else 

nodeyCurrent[i] = nodeyPrevious[i] - (sin(sincosvalueforiterations) * (nodespeed * 

60)) ; 

} 
Figure 3.4: C++ code for node movement 
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variable indicates that the nodes in the network may move in a straight line 

anywhere between -15 and +15 degrees. The nodespeed variable is the user 

defined velocity of each node and the 60 indicates that there is 60 seconds between 

each time step. Finally, nodexCurrent and nodeyCurrent represent the new x and y 

coordinates for the subsequent iteration of the simulation. It should be noted that it 

is necessary to preserve the prior coordinates of the nodes as the MOBIC 

clustering algorithm elects clusterheads by examining the relative mobility. 

3.3 Simulation Output and Summary 

After the node movement has completed, we are ready to start the cycle over by 

recalculating all of the network metrics, determine clustering using each of the 

three techniques, determining betweenness, and once again move the nodes. The 

process continues until all of the time steps have completed. At the end of each 

time step, numerous pieces of data were sent to a comma separated file. The 

contents of this file include the values of all the user defined input, the random 

number seed used to generate the results, the average values of the metrics for all 

time steps, and the average percentage of nodes that exceeded capacity for each 

clustering algorithm over all time steps. The comma separated file was imported 

into excel where the data could be easily manipulated and results could developed. 
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4 Experimental Design and Results 

4.1 Experimental Design 

There was a significant limitation to consider when developing the experiments. 

As a result of the complexity and number of algorithms that must be performed for 

one time step of a simulation, the program took a substantial amount of time to 

produce results for simulations having more than 150 nodes. Thus, this was the 

maximum number of nodes considered for our experimental design. Further 

optimizations of the code and the algorithms within the code would allow for 

quicker computational times and a more robust analysis. The table on the 

following page represents the levels of variables that were tested. 
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20 20 10 20 

63 60 30 50 

106 100 50 100 

150 150 75 150 

 200 100 200 

 

Table 4.1: Levels of experimental design parameters 

Five replications of every combination of metrics were tested. Thus, there were (4 

X 5 X 5 X 5) X 5 replications = 2500 data points. Twenty-five of these data points 

were discarded because they did not have any node-node connection during the 

entire simulation. This was caused because too few nodes were distributed through 

too big of an area. Thus, a total of 2475 data points were used in the analysis. As a 

result of the large number of data points that were considered, the entire data sheet 

could not be included. However, a sample of the excel table used to determine the 

results is given in the appendix. 

Using the results, comparisons were made between each metric and the impact that 

it had on congestion for each of the three clustering algorithms. This approach was 

selected so an individual could select the best clustering algorithm given a 

particular metric level. To develop each graph, all of the data was sorted for a 

given metric in ascending order. Furthermore, the data was equally divided into 

five groups containing 495 data points (2475 / 5 = 495). The range of values for 

 

 

Number Of 

Nodes 

Node 

Capacity 

Communication 

Range 

Square Length Of 

Field 
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each group was simply determined by where the data points fell with respect to the 

value of the metric. 

Two graphs were developed for each network metric. The first graph returns the 

average congestion levels for each type of clustering for different ranges of a 

metric. Given that a network metric falls within one of these ranges, this graph 

indicates how much congestion to expect for each type of clustering. The second 

graph details how many times a clustering algorithm resulted in the least amount 

of congestion given a specific range of a metric. In this graph, it should be noted 

that if two or more algorithms provided the least amount of congestion, they were 

both included in the graph. Thus, the theoretical sum of the values in each block of 

a graph is (495 X 3 = 1485). This would mean that for all 495 cases, the three 

clustering algorithms all provided the same average level of congestion.    

4.2 Results 

As discussed in the previous section, a total of ten graphs were developed (two for 

each complexity metric).  Each of the graphs will be reviewed and conclusions 

with respect to the impact these metrics have on congestion. Also, insight will be 

provided on how varying levels of these metrics impact congestion.  Analysis will 

begin with the average path length metric. 

4.2.1 Average Path Length Results 
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Figure 4.1: Bar graph showing congestion level by average path length  

The first thing that can be noted about this graph is the overall increase in 

congestion as the average path length increases. This makes sense considering that 

as the average path length increases, the density, size, and connections among 

nodes also increases. When the average path length is very close to 1, it is evident 

that each of the clustering algorithms will equally provide minimal congestion. 

Interestingly, as the average path length increases to values between 1.0058 and 

1.27, the highest degree clustering algorithm clearly provide the lowest level of 

congestion. As the average path length increases once again to values between 

1.27 and 1.62 we can see that there is little difference in the clustering algorithms 

with respect to congestion, with Lowest ID having a slight advantage. When the 
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average path length is between 1.62 and 9.35 we can see that both the Lowest ID 

and MOBIC clustering methods perform better than the Highest Degree Method. 

 

Figure 4.2: Bar graph showing clustering algorithm which minimizes congestion by 

average path length 

The above graph validates what was previously stated. It is evident that when the 

path length is near 1, all three algorithms equally provide the best level of 

congestion. When the path length is between 1.0058 and 1.27, we can see that the 

Highest Degree method provided the lowest level of congestion for significantly 

more cases than the other two methods combined. When the average path length is 

greater than 1.27, it is clear that the Lowest ID method provides the least amount 

of congestion the majority of the time with MOBIC not too far behind. Clearly, as 

the average path length increases beyond a value of 1.27, the Highest Degree 
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method provides greater and greater levels of congestion making it a less desirable 

choice. 

 4.2.2 Average Degree Results 

Next, we will look at the average degree metric. 

 

Figure 4.3: Bar graph showing congestion level by average degree 

This graph shows that when a network has a low average degree, any clustering 

algorithm will provide minimal levels of congestion. Similar to average path 

length, a low average degree represents a small network with few edges between 

nodes. A low average degree could also be present with a large number of nodes, 

given they are spread out with little to no connectivity among each other (low 

density). Thus, it makes sense that congestion will be minimal regardless of the 
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clustering algorithm selected. When the average degree is between 5.71 and 

40.116, congestion is relatively similar, with Lowest ID and MOBIC performing 

slightly better. However, when the average degree is between 77.69 and 149, the 

use of Highest Degree clustering provides networks with significantly less 

congestion. The lack of trend for the last block (77.69 – 149) is most likely a result 

of an inadequate sample size. The inadequate sample size was a result of the 

network simulators limitations, as previously stated in Chapter 4. The chart below 

validates these points. 

 

Figure 4.4: Bar graph showing clustering algorithm which minimizes congestion by 

average degree 
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4.2.3 Clustering Coefficient Results 

Moving on, we will consider the network clustering coefficient. 

 

Figure 4.5: Bar graph showing congestion level by clustering coefficient 

Once again, we see the same trend as in the previous two metrics. While the 

network is small and less complex (this corresponds to a relatively low clustering 

coefficient), the choice of clustering technique is irrelevant as all three produce 

low congestion levels. When the clustering coefficient is between .604 and .821 

Lowest ID and MOBIC appear to be better choices to reduce congestion compared 

to Highest Degree. When the clustering coefficient is between .821 and .991, 

Highest Degree produced on average much lower levels of congestion compared to 

Lowest ID and MOBIC. Interestingly, for networks with high network clustering 
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coefficients all three of the algorithms produced very low levels of congestion. 

These results coincide with the results on the graph below.  

 

Figure 4.6: Bar graph showing clustering algorithm which minimizes congestion by 

clustering coefficient 

Further analysis was performed to determine the cause of the results for network 

clustering coefficients between .991 and 1. The value of the clustering coefficient 

suggests that each node’s neighbors are highly connected. This corresponds to a 

network with many edges. Since there are many edges and connections between 

nodes, it can be concluded that the average path length is relatively low. Going 

back to the results from average path length, we saw that networks with a low 

average path length had minimal congestion regardless of the clustering algorithm 
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selection. Thus, this explains the results for network clustering coefficients 

between .991 and 1. 

4.2.4 Network Diameter Results 

The network diameter metric will be discussed next. 

 

Figure 4.7: Bar graph showing congestion level by network diameter 

The first thing that stands out about this graph is that the overall congestion 

increases as the network diameter increases. This is a validated since a higher 

network diameter typically corresponds to a more complex network, and thus, a 

more congested network. Recurring for the fourth time, we see that when the 

network diameter is low (i.e. network is small/simple) the choice of clustering 

algorithm is negligible. When the network diameter is between 1.7 and 2.4 the 



39 
 

benefit of selecting the highest degree algorithm is quite significant. Networks 

with diameters between 2.4 and 3.6 produce similar congestion levels despite the 

clustering technique used with Lowest ID having a slight advantage.  When the 

network diameter is between 3.6 and 25.3, Highest Degree produces congestion 

levels that are relatively higher than both Lowest ID and MOBIC. Once again, this 

information is validated on the subsequent graph below. 

 

Figure 4.8: Bar graph showing clustering algorithm which minimizes congestion by 

network diameter 
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4.2.5 Offdiagonal Complexity Results 

Finally, we will look at offdiagonal complexity.  

 

Figure 4.9: Bar graph showing congestion level by offdiagonal complexity 

As the offdiagonal complexity increases, there is a steady increase in the overall 

congestion. Interestingly, for networks with offdiagonal complexities between 0 

and 1.97, there does not appear to be a significant difference between clustering 

algorithms in terms of congestion. This may indicate that offdiagonal complexity 

is not as important as the other metrics when it is used to determine congestion. 

However, it should be noted that when the offdiagonal complexity is between 

1.907 and 2.384, Highest Degree outperforms both Lowest ID and MOBIC. Once 

again, this is validated in the figure below. 
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Figure 4.10: Bar graph showing clustering algorithm which minimizes congestion by 

offdiagonal complexity 
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5 Conclusions and Future Work 

5.1 Conclusions 

The results in the previous section conclude two key findings. First, it was shown 

that complexity and congestion have a strong positive correlation. Hence, 

congestion levels increase with complexity. This was revealed in all five of the 

complexity metrics that were analyzed. Secondly, for non-complex networks, the 

choice of clustering algorithm is irrelevant. Each of the five metrics showed little 

to no congestion when their values were low. Furthermore, all three clustering 

techniques provided congestion free networks in all five of these cases. The tables 

on the following page recap the clustering algorithm that should be selected to 

minimize congestion given the level of a complexity metric. 
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1 – 1.006 ANY 0.14 – 5.71 LID, MOBIC 0.00 – 0.60  LID, MOBIC 

1.006 – 1.27 HD 5.71 – 17.44 LID, MOBIC 0.60 – 0.71 LID, MOBIC 

1.27 – 1.62 LID 17.44 – 40.17 LID, MOBIC 0.71 – 0.82 LID 

1.62 – 2.39 LID 40.17 – 77.69 HD 0.82 – 0.99 HD 

2.39 – 9.35 LID, MOBIC 77.69 - 149 HD 0.99 – 1.00 ANY 

 

Table 5.1: Summary of clustering algorithm which minimizes congestion given a 

specific level of average path length, average degree, or clustering coefficient 

 

Network Diameter Offdiagonal Complexity 

Metric Level Clustering 

Algorithm 
Metric Level Clustering 

Algorithm 

1.00  – 1.70 ANY 0.00 – 0.52 ANY 

1.70 – 2.40 HD 0.52 – 1.16 ANY 

2.40 – 3.60 LID 1.16 – 1.51 LID, MOBIC 

3.60 – 6.00 LID 1.51 – 1.91 MOBIC 

6.00 – 25.30 LID, MOBIC 1.91 – 2.38 HD 

 

Table 5.2:  Summary of clustering algorithm which minimizes congestion given a 

specific level   of network diameter or offdiagonal complexity 

 

 

Average Path Length Average Degree Clustering Coefficient 

Metric Level Clustering 

Algorithm 
Metric Level Clustering 

Algorithm 
Metric Level Clustering 

Algorithm 
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A great deal of time and effort was put forth in developing the network simulation 

software discussed in Chapter 3. This is a versatile tool that can be utilized for 

purposes outside of this work. The program was coded in a manner that makes it 

scalable for other network analyses. Additional network metrics and clustering 

methods can be integrated with little modification to the existing code. For 

analysis of networks larger than 150 nodes, the code must be optimized for more 

efficient run times. In its current state, analysis of networks exceeding 150 nodes is 

not feasible. 

Currently, the network simulator is a console application. The console provides the 

means for user input and simulation status while results are exported to comma 

separated file. From here they can be opened in Microsoft Excel for analysis. This 

method works well as long as the user is relatively “computer literate”. For large 

scale projects with multiple team members involved this may not work as some 

individuals may get confused. To remedy this, a graphical user interface should 

run on top of the software to provide a clean interface that will reduce confusion. 

Finally, for presentation purposes, visualization could be incorporated into the 

software to graphically show node movement, congestion levels, and more.   

5.2 Future Work 
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Appendix A 

C++ Code for Network Simulator 

The following is the C++ code for each file of the Network Simulator. 

Main.cpp 

#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include <vector> 

#include <fstream> 

#include "NetGenDefs.h" 

 

using namespace std; 

 

int main() 

{ 

 ofstream outputFileDB; 

 

// constant definitions 

 const int iterationCount = 30; 

 

//Variable Def 

 int degreeofeachnode[NUMBER_OF_NODES] ; 

  

 

// function prototypes 

 double APL(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]); 

 double AD(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]); 

 double LDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], 

double nodeCapacity); 

 double ND(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]); 

 int DD(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], int 

degreeofeachnode[NUMBER_OF_NODES], char outputFilename); 

 double HDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], 

double nodeCapacity ) ; 

 double BW(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], 

double nodeCapacity); 
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 double Clustering(int nn, int 

edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]) ; 

 double ODC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], 

int degreeofeachnode[NUMBER_OF_NODES]) ; 

 double MOBIC(int nn, int 

edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double 

nodexPrevious[NUMBER_OF_NODES], double nodexCurrent[NUMBER_OF_NODES], double 

nodeyPrevious[NUMBER_OF_NODES], double nodeyCurrent[NUMBER_OF_NODES], double 

nodeCapacity); 

  

 

 

 typedef vector<double> VectorMOBIC; 

 VectorMOBIC storageTankMOBIC; 

 

 typedef vector<double> VectorHD; 

 VectorHD storageTankHD; 

 

 typedef vector<double> VectorLD; 

 VectorLD storageTankLD; 

 

 typedef vector<double> VectorAPL; 

 VectorLD storageTankAPL; 

 

 typedef vector<double> VectorAD; 

 VectorLD storageTankAD; 

 

 typedef vector<double> VectorND; 

 VectorLD storageTankND; 

 

 typedef vector<double> VectorClustering; 

 VectorLD storageTankClustering; 

 

 typedef vector<double> VectorODC; 

 VectorLD storageTankODC; 

 

/* 

//Seed The Generator 

 int generatorseed ; 

 cout << "\n\nPlease enter the random number seed and press enter.\n"; 

 cin >> generatorseed ; 

 srand(generatorseed); 

 

// get user parameters 

 int iterationMAX; 

 cout << "\n\nPlease enter the desired number of iterations and press enter.\n"; 

 cin >> iterationMAX ; 

 

//Get Communication Distance 
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 int distanceThreshold; 

 cout << "\n\nPlease enter the maximum internode distance and press enter.\n"; 

 cin >> distanceThreshold ; 

 

//Get Square Length Of Field 

 int fieldLengthandWidth ; 

 cout << "\n\nPlease enter the field length.\n" ; 

 cin >> fieldLengthandWidth ; 

 

//Get Node Capacity For Network 

 double nodeCapacity; 

 cout << "\n\nPlease enter the node capacity and press enter.\n" ; 

 cin >> nodeCapacity ; 

 

//Get Filename For Output File 

 char outputFilename; 

 cout << "\n\nPlease enter the filename for the output data and press enter.\n"; 

 cin >> outputFilename; 

 

*/ 

  

// Program initialization 

  

 int iterationMAX; 

 cout << "\n\nPlease enter the desired number of iterations and press enter.\n"; 

 cin >> iterationMAX ; 

 

 

 double nodexPrevious[NUMBER_OF_NODES]; 

 double nodeyPrevious[NUMBER_OF_NODES]; 

 double nodexCurrent[NUMBER_OF_NODES]; 

 double nodeyCurrent[NUMBER_OF_NODES]; 

 

 double distancematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0}; 

 double averagepathlength = 0; 

 double averagedegree = 0 ; 

 double sumofdegrees = 0 ; 

 double ODComplexity = 0 ; 

 double maxpath = 0 ; 

 double percentExceedingCapacity = 0 ; 

 double LDpercentExceedingCapacity = 0 ; 

 double MOBICpercentExceedingCapacity = 0 ; 

 double HDpercentExceedingCapacity = 0 ; 

 double networkclusteringcoeff = 0 ;  

 int lowestdegreematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

 vector <int> savedvaluesforlowestdegree ; 

 double metricCalculationDecisicion = 0 ; 

 double MOBICSum = 0 ; 

 double HDSum = 0 ; 
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 double LDSum = 0 ; 

 double MOBICOutput = 0 ; 

 double HDOutput = 0 ; 

 double LDOutput = 0 ; 

 double APLSum = 0 ; 

 double APLOutput = 0 ; 

 double ADOutput = 0 ; 

 double ADSum = 0 ; 

 double ODCOutput = 0 ; 

 double ODCSum = 0 ; 

 double NDOutput = 0 ; 

 double NDSum = 0 ; 

 double ClusteringSum = 0 ; 

 double ClusteringOutput = 0 ; 

 

 int generatorseed = 0 ; 

  

 int distanceThreshold = 0 ; 

 int fieldLengthandWidth = 0 ; 

 double nodeCapacity = 0 ; 

 char outputFilename = 0 ; 

 

 

 int distanceThresholdCounter[5] = {10, 30, 50, 75, 100} ; 

 double nodeCapacityCounter[5] = {20, 60, 100, 150, 193} ; 

 int fieldLengthandWidthCounter[5] = {20, 50, 100, 150, 200} ; 

 int generatorseedCounter[10] = {1, 5, 10, 20, 30, 40, 50, 60, 70, 80} ; 

 

  

 //Enter node speed in km/second 

 double nodespeed = .332 ; 

 int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0}; 

 double sincosvalueforiterations ; 

 

 

// Generate initial network node locations 

for (int iterationCounter = 0; iterationCounter < iterationMAX; ++iterationCounter) 

{ 

 for (int j=0; j < 5; j++) 

 { 

  for (int k=0; k < 5; k++) 

  { 

     for (int l=0; l < 5; l++) 

     { 

 outputFileDB.open ("N:\\ResultsForFinalMeeting\\FinalMeetingResults150.txt", ios::app); 

 fieldLengthandWidth = fieldLengthandWidthCounter[j] ; 

 nodeCapacity = nodeCapacityCounter[k]  ; 

 distanceThreshold = distanceThresholdCounter[l] ; 

 generatorseed = generatorseedCounter[iterationCounter] ; 
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 //Set Initial X and Y Coordinates For All Nodes 

 for (int i = 0; i < NUMBER_OF_NODES; i++ ) 

 { 

  nodexCurrent[i] = rand() % fieldLengthandWidth; 

  nodeyCurrent[i] = rand() % fieldLengthandWidth; 

 } 

 

  

 metricCalculationDecisicion = 0 ; 

 

 HDOutput = 0 ; 

 HDSum = 0 ; 

 

 MOBICOutput = 0 ; 

 MOBICSum = 0 ; 

 

 LDOutput = 0 ; 

 LDSum = 0 ; 

 

 APLSum = 0 ; 

 APLOutput = 0 ; 

  

 ADOutput = 0 ; 

 ADSum = 0 ; 

  

 ODCOutput = 0 ; 

 ODCSum = 0 ; 

  

 NDOutput = 0 ; 

 NDSum = 0 ; 

  

 ClusteringSum = 0 ; 

 ClusteringOutput = 0 ; 

 

 storageTankMOBIC.clear() ; 

 storageTankHD.clear() ; 

 storageTankLD.clear(); 

 storageTankAPL.clear() ; 

 storageTankND.clear() ; 

 storageTankODC.clear(); 

 storageTankClustering.clear() ; 

 storageTankAD.clear(); 

 

 

 

for (int i = 0 ; i < 10 ; i++) 

 

{ 
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//Allows metric calculations to be performed only on the first instance of the network 

 metricCalculationDecisicion++ ; 

 

 

 

//Calculate Distance Between All Nodes And Store Values In distancematrix 

  for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   for ( int j = 0; j < NUMBER_OF_NODES; j++ ) 

   { 

    distancematrix[i][j] = sqrt((pow(nodexCurrent[i]-

nodexCurrent[j],2)) + (pow(nodeyCurrent[i]-nodeyCurrent[j],2))); 

   } 

  } 

  

/*Determine Edges Between Nodes (If Distance Between Two Points Is Less Than Or Equal To 

distanceThreshold) And 

Store Values In edgematrix*/ 

  for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   for ( int j = 0; j < NUMBER_OF_NODES; j++ ) 

   { 

    if (distancematrix[i][j] <= distanceThreshold ) 

     

    { 

     edgematrix[i][j] = 1; 

    } 

     

    if (distancematrix[i][j] > distanceThreshold ) 

    { 

     edgematrix[i][j] = 999 ; 

    } 

 

    if ( i == j ) 

    { 

     edgematrix[i][j] = 0 ; 

    } 

   } 

 

  } 

 

//Calculate Network Characteristics (Metrics) On INITIAL NODE COORDINATES ONLY  

 

//if (metricCalculationDecisicion = 1) 

//{ 

//  averagepathlength = APL(NUMBER_OF_NODES, edgematrix); 

//  averagedegree = AD(NUMBER_OF_NODES, edgematrix); 
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//  maxpath = ND(NUMBER_OF_NODES, edgematrix); 

//  percentExceedingCapacity = BW(NUMBER_OF_NODES, edgematrix, 

nodeCapacity); 

//  networkclusteringcoeff = Clustering(NUMBER_OF_NODES, edgematrix); 

//  ODComplexity = ODC(NUMBER_OF_NODES, edgematrix, 

degreeofeachnode); 

//} 

 

// Prepare to do the next iteration of the network positions 

  for (int i = 0; i < NUMBER_OF_NODES; ++i) 

  { 

   nodexPrevious[i] = nodexCurrent[i]; 

   nodeyPrevious[i] = nodeyCurrent[i]; 

  } 

   

  for (int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   sincosvalueforiterations = (-15 + rand() % 15); 

   nodexCurrent[i] = nodexPrevious[i] + (cos(sincosvalueforiterations) * 

(nodespeed * 15)) ; 

    

   if (sincosvalueforiterations > 0) 

    

    nodeyCurrent[i] = nodeyPrevious[i] + 

(sin(sincosvalueforiterations) * (nodespeed * 15)) ; 

 

   else 

 

    nodeyCurrent[i] = nodeyPrevious[i] - 

(sin(sincosvalueforiterations) * (nodespeed * 15)) ; 

  } 

 

  

 

  int rval = DD(NUMBER_OF_NODES, edgematrix, degreeofeachnode, 

outputFilename); 

   

   

  HDpercentExceedingCapacity = HDC(NUMBER_OF_NODES, edgematrix, 

nodeCapacity) ; 

  LDpercentExceedingCapacity = LDC(NUMBER_OF_NODES, edgematrix, 

nodeCapacity); 

  MOBICpercentExceedingCapacity = MOBIC( NUMBER_OF_NODES, 

edgematrix,nodexPrevious,nodexCurrent, nodeyPrevious, nodeyCurrent, nodeCapacity ) ; 

 

  averagepathlength = APL(NUMBER_OF_NODES, edgematrix); 

  averagedegree = AD(NUMBER_OF_NODES, edgematrix); 

  maxpath = ND(NUMBER_OF_NODES, edgematrix); 

  networkclusteringcoeff = Clustering(NUMBER_OF_NODES, edgematrix); 
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  ODComplexity = ODC(NUMBER_OF_NODES, edgematrix, 

degreeofeachnode); 

 

 

  storageTankAPL.push_back(averagepathlength) ; 

  storageTankAD.push_back(averagedegree) ; 

  storageTankND.push_back(maxpath) ; 

  storageTankClustering.push_back(networkclusteringcoeff) ; 

  storageTankODC.push_back(ODComplexity) ; 

  storageTankMOBIC.push_back(MOBICpercentExceedingCapacity) ; 

  storageTankHD.push_back(HDpercentExceedingCapacity) ; 

  storageTankLD.push_back(LDpercentExceedingCapacity) ; 

} 

 

//Calculate APL Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankAPL.size() ; i++) 

  { 

   APLSum = APLSum + storageTankAPL[i] ; 

  } 

 

  APLOutput = APLSum / storageTankAPL.size() ; 

 

//Calculate AD Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankAD.size() ; i++) 

  { 

   ADSum = ADSum + storageTankAD[i] ; 

  } 

 

  ADOutput = ADSum / storageTankAD.size() ; 

 

//Calculate ND Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankND.size() ; i++) 

  { 

   NDSum = NDSum + storageTankND[i] ; 

  } 

 

  NDOutput = NDSum / storageTankND.size() ; 

 

//Calculate Clustering Coefficient Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankClustering.size() ; i++) 

  { 

   ClusteringSum = ClusteringSum + storageTankClustering[i] ; 

  } 

 

  ClusteringOutput = ClusteringSum / storageTankClustering.size() ; 

 

//Calculate ODC Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankODC.size() ; i++) 

  { 
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   ODCSum = ODCSum + storageTankODC[i] ; 

  } 

 

  ODCOutput = ODCSum / storageTankODC.size() ; 

 

 

//Calculate MOBIC Betweenness Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankMOBIC.size() ; i++) 

  { 

   MOBICSum = MOBICSum + storageTankMOBIC[i] ; 

  } 

 

  MOBICOutput = MOBICSum / storageTankMOBIC.size() ; 

 

//Calculate Lowest Degree Betweenness Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankLD.size() ; i++) 

  { 

   LDSum = LDSum + storageTankLD[i] ; 

  } 

 

  LDOutput = LDSum / storageTankLD.size() ; 

 

//Calculate Highest Degree Betweenness Average Over Time Steps 

  for (unsigned int i = 0; i < storageTankHD.size() ; i++) 

  { 

   HDSum = HDSum + storageTankHD[i] ; 

  } 

 

  HDOutput = HDSum / storageTankHD.size() ; 

 

 outputFileDB << endl << NUMBER_OF_NODES << "," << nodeCapacity << "," << 

distanceThreshold << "," << generatorseed << "," << fieldLengthandWidth << "," <<  APLOutput 

<< "," << ADOutput << "," << ClusteringOutput << "," << NDOutput << "," << ODCOutput << 

"," << percentExceedingCapacity << "," << LDOutput << "," << HDOutput << "," << 

MOBICOutput    ; 

  

 outputFileDB.close(); 

 

//After Each Iteration Of The Program The Following Will Be Printed To The Screen  

 cout << "\n\n\n\n\n\n\n**********RETURNED VALUES**********\n\n\n" ; 

 cout << "\n\nThe average path length is " << averagepathlength ; 

 cout << "\n\nThe clustering coefficient is " << networkclusteringcoeff ; 

 cout << "\n\nThe Offdiagonal Complexity is " << ODComplexity ; 

 cout << "\n\nThe average degree is " << averagedegree ; 

 cout << "\n\nThe network diameter is " << maxpath ; 

 cout << "\n\nThe seed used to generate these results was " << generatorseed ; 

 cout << "\n\nThe percentage of nodes that exceed capacity for the initial instance is " << 

percentExceedingCapacity ; 
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 cout << "\n\nThe average percentage of nodes that exceed capacity using MOBIC for all 

instance is " << MOBICOutput ; 

 cout << "\n\nThe average percentage of nodes that exceed capacity using Highest Degree 

for all instance is " << HDOutput ; 

 cout << "\n\nThe average percentage of nodes that exceed capacity using Lowest Degree 

for all instance is " << LDOutput ; 

 cout << endl << endl ; 

  

 } 

  

 

/*cout << "\n\nTHE EDGE MATRIX IS\n\n" ;   

  for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

 

    { 

     if (edgematrix[i][j] == 999) 

      

      edgematrix[i][j] = 0 ; 

    } 

  }*/ 

   

   

  /*for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

   { 

        printf("%d ",edgematrix[i][j]); 

   } 

     printf("\n"); 

   }*/   

   

   

  //cout << "\n\nITERATION ENDS HERE" ; 

   

   

  } 

  } 

  } 

   

   

   return 0; 

} 

 



55 
 

NetGenDefs.h 
#ifndef h_DEFINITIONSFORTHENETWORKGENERATOR_0001 

   #define h_DEFINITIONSFORTHENETWORKGENERATOR_0001 

   #define NUMBER_OF_NODES 150    

#endif 
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AvgDegree.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include "NetGenDefs.h" 

 

using namespace std; 

double sumofdegrees ; 

double averagedegree ; 

 

double AD(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]) 

{ 

 sumofdegrees = 0 ; 

  

 for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   for (int j=0; j < NUMBER_OF_NODES; j++) 

   { 

    if(edgematrix[i][j] == 1 && i != j && edgematrix[i][j] != 999) 

    { 

     sumofdegrees++ ; 

    } 

   } 

  } 

   

  averagedegree = (sumofdegrees / NUMBER_OF_NODES); 

  return averagedegree; 

} 
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AvgPathLength.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include "NetGenDefs.h" 

 

using namespace std; 

double averagepathlength ; 

 

double APL(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]) 

{ 

  double sumofshortestpaths = 0 ; 

     double numberofpaths = 0 ; 

  double shortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

 

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   shortestpath[i][j] = edgematrix[i][j]; 

  } 

 } 

 

  for (int k = 0; k < NUMBER_OF_NODES; k++) 

  { 

   for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     shortestpath[i][j] = min(shortestpath[i][j], 

shortestpath[i][k] + shortestpath[k][j]) ; 

    } 

   }  

  }  

    

                           

  for (int i=0; i < NUMBER_OF_NODES; i++)  

  {  

   for (int j=0; j < NUMBER_OF_NODES; j++)  

   {  

    if(shortestpath[i][j] > 0 && i!=j && shortestpath[i][j] != 999 )  

    {  

     numberofpaths++; 

    }  

   } 

  } 
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  for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   for (int j=0; j < NUMBER_OF_NODES; j++) 

   { 

    if(i != j && shortestpath[i][j] != 999) 

    { 

     sumofshortestpaths = sumofshortestpaths + 

shortestpath[i][j]; 

    } 

   } 

  } 

  sumofshortestpaths = sumofshortestpaths / 2 ; 

  numberofpaths = numberofpaths / 2 ; 

  averagepathlength = (sumofshortestpaths / numberofpaths) ; 

   

  return averagepathlength ; 

 

} 
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Betweenness.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include "NetGenDefs.h" 

 

 

using namespace std; 

 

double BW(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double 

nodeCapacity) 

{ 

  double btwtemp = 0 ; 

  double betweenness[NUMBER_OF_NODES]; 

  double btwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ; 

  double Number_Of_Nodes_That_Exceed_Capacity = 0 ; 

  double percentExceedingCapacity; 

   

  for(int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   betweenness[i] = 0; 

  } 

  

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   btwshortestpath[i][j] = edgematrix[i][j]; 

  } 

 } 

 

  

  for (int k = 0; k < NUMBER_OF_NODES; k++) 

  { 

   for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     btwshortestpath[i][j] = min(btwshortestpath[i][j], 

btwshortestpath[i][k] + btwshortestpath[k][j]) ; 

    } 

   }  

  }   

 

 for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 
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    { 

     if (btwshortestpath[i][j] >= 2) 

     { 

      for (int k = 0; k < NUMBER_OF_NODES; 

k++) 

      { 

       if ( i != j && i != k && j != k && 

((btwshortestpath[i][k] + btwshortestpath[k][j]) == btwshortestpath[i][j])) 

       { 

        betweenness[k]++; 

       } 

      } 

     } 

  } 

  } 

 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   betweenness[i] = (betweenness[i] / 2) ; 

  } 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   if (nodeCapacity < betweenness[i]) 

   { 

    Number_Of_Nodes_That_Exceed_Capacity++ ; 

   } 

  } 

 

  percentExceedingCapacity = Number_Of_Nodes_That_Exceed_Capacity / 

NUMBER_OF_NODES ; 

 

  /*cout << "\n\nThe percentage of nodes that exceed capacity is " << 

percentExceedingCapacity ; 

  cout << endl << endl ;*/ 

 

  

  //cout << endl << endl ; 

 

  /*cout << "\n\nThe betweenness of each node in the network is...\n\n" ; 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  {     

   cout << "Node " << i + 1 << " " << betweenness[i] ; 

   cout << "\n"  ; 

  }*/                       

  return percentExceedingCapacity ;  } 
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ClusteringCoef.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include <vector> 

#include "NetGenDefs.h" 

 

using namespace std; 

 

 

typedef vector<int>    integerArray; 

typedef integerArray::iterator arrayPtr; 

 

integerArray savedvaluesfordegree ; 

 

double networkclusteringcoeff ; 

 

double Clustering(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]) 

{  

double degreearray[NUMBER_OF_NODES] = {0}; 

double coeffdenom[NUMBER_OF_NODES] = {0} ; 

double coeffnum[NUMBER_OF_NODES] = {0} ; 

double clusteringcoeff[NUMBER_OF_NODES] = {0} ; 

savedvaluesfordegree.clear(); 

double numsum = 0 ; 

networkclusteringcoeff = 0 ; 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 savedvaluesfordegree.clear(); 

 

 for (int j = 0; j < NUMBER_OF_NODES; j++) 

 { 

   

 

  if (i != j && edgematrix[i][j] == 1) 

 

  { 

   savedvaluesfordegree.push_back(j) ; 

  } 

     

  unsigned int k = 0; 

  for (; k < savedvaluesfordegree.size(); k++) 

 

  { 

   if (j == savedvaluesfordegree[k]) 

   { 
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    degreearray[i]++ ; 

   } 

  } 

 }   

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 coeffdenom[i] = (degreearray[i] * (degreearray[i] - 1)) / 2  ; 

} 

 

 

 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j=0; j < NUMBER_OF_NODES; j++) 

 { 

  if (edgematrix[i][j] == 1) 

    

  { 

   for (int k=0; k < NUMBER_OF_NODES; k++) 

   { 

    if ((edgematrix[i][k] == 1) && (edgematrix[j][k] == 1)) 

    { 

     coeffnum[j]++ ; 

    } 

   } 

  } 

 } 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 coeffnum[i] = coeffnum[i] / 2 ; 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 if (coeffdenom[i] != 0) 

 { 

  clusteringcoeff[i] = coeffnum[i] / coeffdenom[i] ; 

 } 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 numsum = numsum + clusteringcoeff[i] ; 

} 
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networkclusteringcoeff = (numsum / NUMBER_OF_NODES) ; 

 

//cout << "\n\nThe network clustering coefficient is " << networkclusteringcoeff << endl ; 

 

return   networkclusteringcoeff ; 

 

} 
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HighestDegreeClustering.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include <vector> 

#include "NetGenDefs.h" 

 

using namespace std; 

 

typedef vector<int>    integerArray; 

typedef integerArray::iterator arrayPtr; 

 

integerArray savedvaluesforhighestdegree ; 

 

 

double HDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double 

nodeCapacity) 

{  

 

savedvaluesforhighestdegree.clear(); 

int degreeArray[NUMBER_OF_NODES] = {0} ; 

int sortedDegreeArray[NUMBER_OF_NODES] = {0}  ; 

int originalPositionArray[NUMBER_OF_NODES] = {0} ; 

double highestdegreematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

int temp = 0 ; 

int temp1 = 0 ; 

 

for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    degreeArray[i] = 0; 

   } 

 

//Compute Degree For Each Node 

for (int i=0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j=0; j < NUMBER_OF_NODES; j++) 

 { 

  if ( i != j && edgematrix[i][j] == 1) 

  { 

   degreeArray[i]++ ; 

  } 

 } 

} 

 

//Copy Contents Of degreeArray To sortedDegreeArray  

for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 
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   sortedDegreeArray[i] = degreeArray[i] ; 

   originalPositionArray[i] = i ; 

  } 

 

//Sort Contents Of sortedDegreeArray In Descending Order 

 

 for (int i = 0; i < NUMBER_OF_NODES ; i++) 

 

 { 

  for(int j=0; j < NUMBER_OF_NODES; j++) 

 

  { 

   if(sortedDegreeArray[i] > sortedDegreeArray[j]) 

   { 

    temp = sortedDegreeArray[i] ; 

    sortedDegreeArray[i] = sortedDegreeArray[j] ; 

    sortedDegreeArray[j] = temp ; 

    temp1 = originalPositionArray[i] ; 

    originalPositionArray[i] = originalPositionArray[j] ; 

    originalPositionArray[j] = temp1 ; 

   } 

  } 

 } 

 

 for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   unsigned int p = 0; 

   for (;p < savedvaluesforhighestdegree.size(); ++p ) 

   { 

    if ( (originalPositionArray[i] == 

savedvaluesforhighestdegree[p]) ) 

    {  

     break; 

    } 

   } 

    

   if (p == savedvaluesforhighestdegree.size()) 

   { 

    for (int j=0; j < NUMBER_OF_NODES; j++) 

    { 

     if (edgematrix[originalPositionArray[i]][j] != 999 && 

originalPositionArray[i] != j) 

     { 

     highestdegreematrix[originalPositionArray[i]][j] = 

edgematrix[originalPositionArray[i]][j]; 

     savedvaluesforhighestdegree.push_back(j) ; 

     }  

    } 
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   } 

 } 

  

 

/*cout << "\n\n\n" ; 

cout << "Highest Degree Clustering.....\n\n" ; 

for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    cout << endl ; 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

   { 

       cout << highestdegreematrix[i][j] << " " ; 

   } 

}*/ 

 

//Betweenness Test Starts Here 

  double HDbtwtemp = 0 ; 

  double HDbetweenness[NUMBER_OF_NODES]; 

  double HDbtwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ; 

  double HDNumber_Of_Nodes_That_Exceed_Capacity = 0 ; 

  double HDpercentExceedingCapacity = 0; 

   

  for(int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   HDbetweenness[i] = 0; 

  } 

  

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   HDbtwshortestpath[i][j] = highestdegreematrix[i][j]; 

  } 

 } 

 

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   if (HDbtwshortestpath[i][j] == 0) 

   HDbtwshortestpath[i][j] = 999; 

  } 

 } 

  

  

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 
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   if (HDbtwshortestpath[i][j] == 1) 

   HDbtwshortestpath[j][i] = 1; 

  } 

 } 

 

   

 for (int k = 0; k < NUMBER_OF_NODES; k++) 

  { 

   for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     HDbtwshortestpath[i][j] = 

min(HDbtwshortestpath[i][j], HDbtwshortestpath[i][k] + HDbtwshortestpath[k][j]) ; 

    } 

   }  

  } 

 

 

 /*cout << "\n\n\n" ; 

 cout << "Shortest Path.....\n\n" ; 

 for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    cout << endl ; 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

   { 

       cout << HDbtwshortestpath[i][j] << " " ; 

   } 

   }*/ 

  

  

 for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     if (HDbtwshortestpath[i][j] >= 2) 

     { 

      for (int k = 0; k < NUMBER_OF_NODES; 

k++) 

      { 

       if ( i != j && i != k && j != k && 

((HDbtwshortestpath[i][k] + HDbtwshortestpath[k][j]) == HDbtwshortestpath[i][j])) 

       { 

        HDbetweenness[k]++; 

       } 

      } 

     } 

  } 

  } 
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  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   HDbetweenness[i] = (HDbetweenness[i] / 2) ; 

  } 

 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   if (nodeCapacity < HDbetweenness[i]) 

   { 

    HDNumber_Of_Nodes_That_Exceed_Capacity++ ; 

   } 

  } 

 

  HDpercentExceedingCapacity = HDNumber_Of_Nodes_That_Exceed_Capacity 

/ NUMBER_OF_NODES ; 

 

  /*cout << "\n\nThe percentage of nodes that exceed capacity is " << 

HDpercentExceedingCapacity ; 

  cout << endl << endl ; 

   

  

  cout << endl << endl ; 

   

  cout << "\n\nThe betweenness of each node in the network is...\n\n" ; 

   

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  {     

   cout << "Node " << i + 1 << " " << HDbetweenness[i] ; 

   cout << "\n"  ; 

  } */ 

                      

  return HDpercentExceedingCapacity ; 

 

return 0;    

 

 

} 
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LowestIDClustering.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include <vector> 

#include "NetGenDefs.h" 

 

using namespace std; 

 

 

typedef vector<int>    integerArray; 

typedef integerArray::iterator arrayPtr; 

 

integerArray savedvaluesforlowestdegree ; 

 

 

double LDC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double 

nodeCapacity) 

{  

int lowestdegreematrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0}; 

savedvaluesforlowestdegree.clear(); 

for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   unsigned int p = 0; 

   for (;p < savedvaluesforlowestdegree.size(); ++p) 

   { 

    if (i == savedvaluesforlowestdegree[p]) 

    { 

     break; 

    } 

   } 

   if (p == savedvaluesforlowestdegree.size()) 

   { 

    for (int j=0; j < NUMBER_OF_NODES; j++) 

    { 

     if(i != j && edgematrix[i][j] == 1) 

     { 

      lowestdegreematrix[i][j] = 1 ; 

      savedvaluesforlowestdegree.push_back(j) ; 

     } 

    } 

   } 

  } 

 

/*cout << "\n\n\n" ; 

cout << "Lowest ID Clustering.....\n\n" ; 

for (int i=0; i < NUMBER_OF_NODES; ++i) 
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   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

   { 

        printf("%d ",lowestdegreematrix[i][j]); 

   } 

     printf("\n"); 

   }*/ 

 

//Betweenness Test Starts Here 

double btwtemp = 0 ; 

  double LDbetweenness[NUMBER_OF_NODES]; 

  double LDbtwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ; 

  double LDNumber_Of_Nodes_That_Exceed_Capacity = 0 ; 

  double LDpercentExceedingCapacity; 

   

  for(int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   LDbetweenness[i] = 0; 

  } 

  

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   LDbtwshortestpath[i][j] = lowestdegreematrix[i][j]; 

  } 

 } 

 

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   if (LDbtwshortestpath[i][j] == 0) 

   LDbtwshortestpath[i][j] = 999; 

  } 

 } 

 

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   if (LDbtwshortestpath[i][j] == 1) 

   LDbtwshortestpath[j][i] = 1; 

  } 

 } 

 

  

  for (int k = 0; k < NUMBER_OF_NODES; k++) 

  { 
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   for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     LDbtwshortestpath[i][j] = 

min(LDbtwshortestpath[i][j], LDbtwshortestpath[i][k] + LDbtwshortestpath[k][j]) ; 

    } 

   }  

  }   

 

 for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     if (LDbtwshortestpath[i][j] >= 2) 

     { 

      for (int k = 0; k < NUMBER_OF_NODES; 

k++) 

      { 

       if ( i != j && i != k && j != k && 

((LDbtwshortestpath[i][k] + LDbtwshortestpath[k][j]) == LDbtwshortestpath[i][j])) 

       { 

        LDbetweenness[k]++; 

       } 

      } 

     } 

  } 

  } 

 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   LDbetweenness[i] = (LDbetweenness[i] / 2) ; 

  } 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   if (nodeCapacity < LDbetweenness[i]) 

   { 

    LDNumber_Of_Nodes_That_Exceed_Capacity++ ; 

   } 

  } 

 

  LDpercentExceedingCapacity = LDNumber_Of_Nodes_That_Exceed_Capacity / 

NUMBER_OF_NODES ; 

 

 /* cout << "\n\nThe percentage of nodes that exceed capacity is " << 

LDpercentExceedingCapacity ; 

  cout << endl << endl ; 
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  cout << endl << endl ; 

   

  cout << "\n\nThe betweenness of each node in the network is...\n\n" ; 

   

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  {     

   cout << "Node " << i + 1 << " " << LDbetweenness[i] ; 

   cout << "\n"  ; 

  }*/  

                      

  return LDpercentExceedingCapacity ; 

 

return   0; 

 

} 
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MobicClustering.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include <vector> 

#include "NetGenDefs.h" 

 

using namespace std; 

double distancematrixcurrent[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

double distancematrixprevious[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

double distancematrixMOBIC[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

double MOBICArray[NUMBER_OF_NODES] = {0} ; 

double MOBICMean[NUMBER_OF_NODES] = {0} ; 

double MOBICVarianceMatrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

double MOBICMyMatrix[NUMBER_OF_NODES] = {0} ; 

double MOBICClusteringMatrix[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

int originalPositionArrayMOBIC[NUMBER_OF_NODES] = {0} ; 

double sortedMOBICArray[NUMBER_OF_NODES] = {0}  ; 

double temp = 0 ; 

int temp1 = 0 ; 

 

typedef vector<int>    integerArrayMOBIC; 

typedef integerArrayMOBIC::iterator arrayPtr; 

 

integerArrayMOBIC savedvaluesforMOBIC ; 

 

double MOBIC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], double 

nodexPrevious[NUMBER_OF_NODES], double nodexCurrent[NUMBER_OF_NODES], double 

nodeyPrevious[NUMBER_OF_NODES], double nodeyCurrent[NUMBER_OF_NODES], double 

nodeCapacity ) 

{ 

 

savedvaluesforMOBIC.clear() ; 

 

 

//Clear contents of all arrays  

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j = 0; j < NUMBER_OF_NODES; j++) 

 { 

  distancematrixcurrent[i][j] = 0 ; 

 } 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j = 0; j < NUMBER_OF_NODES; j++) 
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 { 

  distancematrixprevious[i][j] = 0 ; 

 } 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j = 0; j < NUMBER_OF_NODES; j++) 

 { 

  distancematrixMOBIC[i][j] = 0 ; 

 } 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 MOBICArray[i] = 0 ; 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 MOBICMean[i] = 0 ; 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j = 0; j < NUMBER_OF_NODES; j++) 

 { 

  MOBICVarianceMatrix[i][j] = 0 ; 

 } 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 MOBICMyMatrix[i] = 0 ; 

} 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

{ 

 for (int j = 0; j < NUMBER_OF_NODES; j++) 

 { 

  MOBICClusteringMatrix[i][j] = 0 ; 

 } 

} 

 

 

 

 

 

//Calculate Distance Matrix For Previous Node Locations 
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 for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   for ( int j = 0; j < NUMBER_OF_NODES; j++ ) 

   { 

    distancematrixcurrent[i][j] = sqrt((pow(nodexCurrent[i]-

nodexCurrent[j],2)) + (pow(nodeyCurrent[i]-nodeyCurrent[j],2))); 

   } 

  } 

 

  

  

 

 //Calculate Distance Matrix For Current Node Locations 

 for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   for ( int j = 0; j < NUMBER_OF_NODES; j++ ) 

   { 

    distancematrixprevious[i][j] = sqrt((pow(nodexPrevious[i]-

nodexPrevious[j],2)) + (pow(nodeyPrevious[i]-nodeyPrevious[j],2))); 

   } 

  } 

  

 

 //Calculate MOBIC Matrix 

 for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   for ( int j = 0; j < NUMBER_OF_NODES; j++ ) 

   { 

    if (i == j) 

    { 

     distancematrixMOBIC[i][j] = 0 ; 

    } 

 

    else 

    { 

    distancematrixMOBIC[i][j] = distancematrixcurrent[i][j] / 

distancematrixprevious[i][j] ; 

    } 

   } 

  } 

 

 //***Variance calculation (My) for each row of MOBIC matrix begins here 

 

 //The next two loops compute the mean for each row of the matrix 

  

 for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 



76 
 

   for ( int j = 0; j < NUMBER_OF_NODES; j++ ) 

   { 

    MOBICArray[i] = MOBICArray[i] + 

distancematrixMOBIC[i][j] ; 

   } 

  } 

  

 //cout << "\n\n\nThis is the mobic section" ; 

 for ( int i = 0; i < NUMBER_OF_NODES; i++ ) 

  { 

   MOBICMean[i] = MOBICArray[i] / (NUMBER_OF_NODES - 1)   ; 

  } 

 

 //Calculate (Value - Mean)^2 For each node 

 for ( int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for (int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   MOBICVarianceMatrix[i][j] = pow(distancematrixMOBIC[i][j] - 

MOBICMean[i],2) ; 

  } 

 } 

 

 //Final calculations for My of each node 

 for ( int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for (int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   MOBICMyMatrix[i] = MOBICMyMatrix[i] + 

MOBICVarianceMatrix[i][j] ; 

  } 

 } 

 

 for ( int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  MOBICMyMatrix[i] = MOBICMyMatrix[i] / (NUMBER_OF_NODES - 1); 

 } 

 

 /*for ( int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  cout << MOBICMyMatrix[i] << endl ; 

 }*/ 

 

 

//Clustering Begins Here 

 

for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   sortedMOBICArray[i] = MOBICMyMatrix[i] ; 
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   originalPositionArrayMOBIC[i] = i ; 

  } 

 

for (int i = 0; i < NUMBER_OF_NODES ; i++) 

 { 

  for(int j=0; j < NUMBER_OF_NODES; j++) 

 

  { 

   if(sortedMOBICArray[i] > sortedMOBICArray[j]) 

   { 

    temp = sortedMOBICArray[i] ; 

    sortedMOBICArray[i] = sortedMOBICArray[j] ; 

    sortedMOBICArray[j] = temp ; 

    temp1 = originalPositionArrayMOBIC[i] ; 

    originalPositionArrayMOBIC[i] = 

originalPositionArrayMOBIC[j] ; 

    originalPositionArrayMOBIC[j] = temp1 ; 

   } 

  } 

 } 

 

 for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   unsigned int p = 0; 

   for (;p < savedvaluesforMOBIC.size(); ++p ) 

   { 

    if ( (originalPositionArrayMOBIC[i] == 

savedvaluesforMOBIC[p]) ) 

    {  

     break; 

    } 

   } 

    

   if (p == savedvaluesforMOBIC.size()) 

   { 

    for (int j=0; j < NUMBER_OF_NODES; j++) 

    { 

     if (edgematrix[originalPositionArrayMOBIC[i]][j] != 

999 && originalPositionArrayMOBIC[i] != j) 

     { 

    

 MOBICClusteringMatrix[originalPositionArrayMOBIC[i]][j] = 

edgematrix[originalPositionArrayMOBIC[i]][j]; 

     savedvaluesforMOBIC.push_back(j) ; 

     }  

    } 

    

   } 

  } 
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/*cout << "\n\n\n" ; 

cout << "MOBIC CLUSTERING.....\n\n" ; 

for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    cout << endl ; 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

   { 

       cout << MOBICClusteringMatrix[i][j] << " " ; 

   } 

}*/ 

 

 

//Betweenness Test Starts Here 

  double MOBICbtwtemp = 0 ; 

  double MOBICbetweenness[NUMBER_OF_NODES]; 

  double 

MOBICbtwshortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] ; 

  double MOBICNumber_Of_Nodes_That_Exceed_Capacity = 0 ; 

  double MOBICpercentExceedingCapacity = 0; 

   

  for(int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   MOBICbetweenness[i] = 0; 

  } 

  

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   MOBICbtwshortestpath[i][j] = MOBICClusteringMatrix[i][j]; 

  } 

 } 

 

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   if (MOBICbtwshortestpath[i][j] == 0) 

   MOBICbtwshortestpath[i][j] = 999; 

  } 

 } 

  

  

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   if (MOBICbtwshortestpath[i][j] == 1) 
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   MOBICbtwshortestpath[j][i] = 1; 

  } 

 } 

 

   

 for (int k = 0; k < NUMBER_OF_NODES; k++) 

  { 

   for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     MOBICbtwshortestpath[i][j] = 

min(MOBICbtwshortestpath[i][j], MOBICbtwshortestpath[i][k] + MOBICbtwshortestpath[k][j]) ; 

    } 

   }  

  } 

 

 

 /*cout << "\n\n\n" ; 

 cout << "Shortest Path.....\n\n" ; 

 for (int i=0; i < NUMBER_OF_NODES; ++i) 

   { 

    cout << endl ; 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

   { 

       cout << MOBICbtwshortestpath[i][j] << " " ; 

   } 

   }*/ 

  

  

 for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     if (MOBICbtwshortestpath[i][j] >= 2) 

     { 

      for (int k = 0; k < NUMBER_OF_NODES; 

k++) 

      { 

       if ( i != j && i != k && j != k && 

((MOBICbtwshortestpath[i][k] + MOBICbtwshortestpath[k][j]) == MOBICbtwshortestpath[i][j])) 

       { 

        MOBICbetweenness[k]++; 

       } 

      } 

     } 

  } 

  } 
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  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   MOBICbetweenness[i] = (MOBICbetweenness[i] / 2) ; 

  } 

 

 

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   if (nodeCapacity < MOBICbetweenness[i]) 

   { 

    MOBICNumber_Of_Nodes_That_Exceed_Capacity++ ; 

   } 

  } 

 

  MOBICpercentExceedingCapacity = 

MOBICNumber_Of_Nodes_That_Exceed_Capacity / NUMBER_OF_NODES ; 

 

  /*cout << "\n\nThe percentage of nodes that exceed capacity is " << 

MOBICpercentExceedingCapacity ; 

  cout << endl << endl ; 

   

  

  cout << endl << endl ; 

   

  cout << "\n\nThe betweenness of each node in the network is...\n\n" ; 

   

  for (int i = 0; i < NUMBER_OF_NODES; i++) 

  {     

   cout << "Node " << i + 1 << " " << MOBICbetweenness[i] ; 

   cout << "\n"  ; 

  } */ 

                      

  return MOBICpercentExceedingCapacity ; 

 

 

 

 

 return   0; 

 

} 

 



81 
 

NetworkDiameter.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include "NetGenDefs.h" 

using namespace std; 

 

double ND(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES]) 

{ 

 

double maxpath = 0 ; 

maxpath = 0; 

 

double shortestpath[NUMBER_OF_NODES][NUMBER_OF_NODES] = {0} ; 

 

 for(int i = 0; i < NUMBER_OF_NODES; i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   shortestpath[i][j] = edgematrix[i][j]; 

  } 

 } 

 

  for (int k = 0; k < NUMBER_OF_NODES; k++) 

  { 

   for (int i = 0; i < NUMBER_OF_NODES; i++) 

   { 

    for (int j = 0; j < NUMBER_OF_NODES; j++) 

    { 

     shortestpath[i][j] = min(shortestpath[i][j], 

shortestpath[i][k] + shortestpath[k][j]) ; 

    } 

   }  

  }  

 

  for (int i=0; i < nn; i++) 

  { 

   for (int j=0; j < nn; j++) 

   { 

    if(shortestpath[i][j] < 999 && shortestpath[i][j] > 0 && i!=j 

&& shortestpath[i][j] > maxpath ) 

    { 

     maxpath = shortestpath[i][j]; 

    } 

   } 

  } 

  return maxpath ; } } 
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ODComplexity.cpp 
#include <iostream> 

#include <cstdlib> 

#include <iomanip> 

#include <cmath> 

#include <ctime> 

#include <vector> 

#include <algorithm> 

#include "NetGenDefs.h" 

 

using namespace std; 

 

 

typedef vector<double>    integerArray; 

typedef integerArray::iterator arrayPtr; 

typedef vector<double>    integerArray2; 

 

 

typedef vector<double> multiDimensionalVector1; 

typedef vector<multiDimensionalVector1> multiDimensionalVector2; 

 

integerArray ODCVector ; 

integerArray2 ODCNumeratorVector ; 

multiDimensionalVector2 ODCArray ; 

double ODCDenom = 0 ; 

int ODCIncrementor ; 

double ODCNumElement ; 

double insideincrementor ; 

double ODCNumeratorTotal ; 

 

 

double ODComplexity ; 

 

double ODC(int nn, int edgematrix[NUMBER_OF_NODES][NUMBER_OF_NODES], int 

degreeofeachnode[NUMBER_OF_NODES]) 

{  

 

 //This section clears all the variables within the function 

 ODCDenom = 0 ; 

 ODCIncrementor = 0 ; 

 ODCNumElement = 0 ; 

 insideincrementor = 0 ; 

 ODCNumeratorTotal = 0 ; 

 ODComplexity = 0 ; 

  

 

 

 

 //This loop sets the degree for each node equal to zero 
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 for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   for (int j=0; j < NUMBER_OF_NODES; j++) 

   { 

    if(edgematrix[i][j] == 1 && i != j && edgematrix[i][j] != 999) 

    { 

     degreeofeachnode[i] = 0 ; 

    }  

   } 

  } 

  

 //This loop determines the degree for each node 

 for (int i=0; i < NUMBER_OF_NODES; i++) 

  { 

   for (int j=0; j < NUMBER_OF_NODES; j++) 

   { 

    if(edgematrix[i][j] == 1 && i != j && edgematrix[i][j] != 999) 

    { 

     degreeofeachnode[i]++ ; 

    } 

   } 

  } 

 

 ODCVector.clear() ; 

 ODCArray.clear() ; 

 ODCNumeratorVector.clear(); 

  

 for (int i = 0; i < NUMBER_OF_NODES; i++) 

  { 

   unsigned int p = 0; 

   for (; p < ODCVector.size(); p++) 

   { 

    if ( degreeofeachnode[i] == ODCVector[p] ) 

    { 

     break ; 

    } 

   } 

    

   if (p == ODCVector.size()) 

   { 

    ODCVector.push_back(degreeofeachnode[i]) ; 

   } 

  } 

 size_t ArraySize = ODCVector.size(); 

 multiDimensionalVector1 initializer; 

 for (unsigned int i = 0; i < ArraySize; ++i) 

 { 

  initializer.push_back(0.0L); 

 } 
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 for (unsigned int i = 0; i < ArraySize; ++i) 

 { 

  ODCArray.push_back(initializer); 

 } 

 

 for (unsigned int i = 0; i < ArraySize; i++) 

 { 

  for (unsigned int j = 0; j < ArraySize; j++) 

  { 

   ODCArray[i][j] = 0; 

  } 

 } 

 

 sort (ODCVector.begin(), ODCVector.end()) ; 

  

 for(unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  for(int j = 0; j < NUMBER_OF_NODES; j++) 

  { 

   if (degreeofeachnode[j] == ODCVector[i]) 

 

   for(unsigned int k = 0; k < ODCVector.size(); k++) 

   { 

    for(int l = 0; l < NUMBER_OF_NODES; l++) 

    { 

     if(l != j && degreeofeachnode[j] == ODCVector[i] 

&& (degreeofeachnode[l] == ODCVector[k]) && (edgematrix[l][j] == 1) && (edgematrix[j][l] == 

1)) 

     { 

      ODCArray[i][k] = ODCArray[i][k] + 1  ; 

     } 

    } 

   } 

  } 

 } 

 

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  for (unsigned int j = 0; j < ODCVector.size(); j++) 

  { 

   if(i != j) 

   { 

    ODCArray[i][j] = ODCArray[i][j] + ODCArray[j][i] ; 

   } 

  } 

 } 
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 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  for (unsigned int j = 0; j < ODCVector.size(); j++) 

  { 

   if(i != j) 

   { 

    ODCArray[j][i] = ODCArray[i][j] ; 

   } 

  } 

 } 

 

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  for (unsigned int j = 0; j < ODCVector.size(); j++) 

  { 

   ODCArray[i][j] = ODCArray[i][j] / 2 ; 

  } 

 } 

 

 ODCDenom = 0 ; 

 

 // This calculates the demoninator for the ODC metric 

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  for (unsigned int j = 0; j < ODCVector.size(); j++) 

  { 

   ODCDenom = ODCDenom + ODCArray[i][j] ; 

  } 

 } 

 

 ODCIncrementor = -1 ; 

 

 while (ODCIncrementor != ODCVector.size() ) 

 { 

  ODCIncrementor++ ; 

   

  if (ODCIncrementor != 0) 

  { 

   ODCNumeratorVector.push_back(ODCNumElement) ; 

  } 

 

  ODCNumElement = 0 ; 

 

  for (unsigned int i = 0; i < ODCVector.size(); i++) 

  { 

   if ((i + ODCIncrementor) < ODCVector.size()) 

   { 

    ODCNumElement = ODCNumElement + ODCArray[i][i + 

ODCIncrementor] ; 
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   } 

  } 

 } 

 

 /*cout << "\n\nODCNUM Vector 1 Printed Below\n\n" ; 

 

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  cout << ODCNumeratorVector[i] << endl ; 

 }*/ 

  

  

  

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  ODCNumeratorVector[i] = ODCNumeratorVector[i] / ODCDenom ; 

  if (ODCNumeratorVector[i] != 0) 

  { 

  ODCNumeratorVector[i] = (ODCNumeratorVector[i] * 

log(ODCNumeratorVector[i])) ; 

  } 

 } 

 

 ODCNumeratorTotal = 0 ; 

   

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  ODCNumeratorTotal = ODCNumeratorTotal + ODCNumeratorVector[i] ; 

 } 

 

 ODComplexity = - (ODCNumeratorTotal) ; 

 

 

 //cout << "\n\nThe offdiagonal complexity is " << ODComplexity ; 

 

  

 /*cout << "\n\nODCNUM Vector Printed Below\n\n" ; 

 

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

 { 

  cout << ODCNumeratorVector[i] << endl ; 

 } 

  

 cout << "\n\nThis is the ODC Part\n\n" ; 

   

   

  for (unsigned int q = 0; q < ODCVector.size() ; q++) 

  { 

   cout << ODCVector[q] << endl ; 
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  } 

   

 

 cout << "\n\nThis is the next part of ODC\n\n" ; 

 

 for (unsigned int i = 0; i < ODCVector.size(); i++) 

   { 

    for (unsigned int j = 0; j < ODCVector.size(); j++) 

    { 

     cout << " " << ODCArray[i][j] ; 

    } 

     cout << "\n"  ; 

   } 

*/ 

    

 

 

return   ODComplexity; 

 

} 
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Appendix B 

Sample Data File Output 

Number 

Of 

Nodes 

Node 

Capacity 

Generator 

Seed 

Square 

Length 

Of Field 

Network 

Diameter 

Offdiagonal 

Complexity 

Highest 

Degree 

Congestion 

150 193 5 100 25.3 1.20754 0.274 

150 193 20 100 24.8 1.14537 0.253333 

150 193 1 100 22.5 1.17753 0.175333 

150 150 10 100 23.5 1.16442 0.201333 

150 100 1 100 21.5 1.17494 0.3 

150 60 20 100 22.5 1.15866 0.357333 

150 60 30 100 23.1 1.18808 0.301333 

150 60 5 100 22.4 1.15074 0.292 

150 100 20 100 21.4 1.16806 0.332 

150 100 30 100 22.4 1.16603 0.228 

 

It should be noted that this represents a very small subset of the actual data that 

was collected from the simulation runs. A selected number of columns and rows 

were selected for formatting purposes. 
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